UrbanPro
true

Find the best tutors and institutes for Class 12 Tuition

Find Best Class 12 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 5.1 with Free Lessons & Tips

For what value of is the function defined by

continuous at x = 0? What about continuity at x = 1?

The given function f is

If f is continuous at x = 0, then

Therefore, there is no value of λ for which f is continuous at x = 0

At x = 1,

f (1) = 4x + 1 = 4 × 1 + 1 = 5

Therefore, for any values of λ, f is continuous at x = 1

Comments

Find the values of so that the function f is continuous at the indicated point.

The given function is

The given function f is continuous at x = 5, if f is defined at x = 5 and if the value of f at x = 5 equals the limit of f at x = 5

At x=5  LHL is K x 5+1 = 5K+1   and RHL is 3 x 5-5=10

Since the fungtion is contiuous at x=5 , LHL=RHL

Hence,  5K+1=10   and 

Therefore, the required value of

Comments

Examine that  is a continuous function.

This function f is defined for every real number and f can be written as the composition of two functions as,

f = g o h, where

It has to be proved first that are continuous functions.

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

Therefore, g is continuous at all points x, such that x < 0

Case II:

Therefore, g is continuous at all points x, such that x > 0

Case III:

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

h (x) = sin x

It is evident that h (x) = sin x is defined for every real number.

Let c be a real number. Put x = c + k

If xc, then k → 0

h (c) = sin c

Therefore, h is a continuous function.

It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is continuous at c and if f is continuous at g (c), then (f o g) is continuous at c.

Therefore, is a continuous function.

Comments

Prove that the functionis continuous at

Therefore, f is continuous at x = 0

Therefore, f is continuous at x = −3

Therefore, f is continuous at x = 5

Comments

Examine the continuity of the function.

Thus, f is continuous at x = 3

Comments

Examine the following functions for continuity.

(a)  (b) 

(c) (d) 

(a) The given function is

It is evident that f is defined at every real number k and its value at k is k − 5.

It is also observed that,

Hence, f is continuous at every real number and therefore, it is a continuous function.

(b) The given function is

For any real number k ≠ 5, we obtain

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.

(c) The given function is

For any real number c ≠ −5, we obtain

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.

(d) The given function is

This function f is defined at all points of the real line.

Let c be a point on a real line. Then, c < 5 or c = 5 or c > 5

Case I: c < 5

Then, f (c) = 5 − c

Therefore, f is continuous at all real numbers less than 5.

Case II : c = 5

Then,

Therefore, f is continuous at x = 5

Case III: c > 5

Therefore, f is continuous at all real numbers greater than 5.

Hence, f is continuous at every real number and therefore, it is a continuous function.

Comments

Prove that the function is continuous at x = n, where n is a positive integer.

The given function is f (x) = xn

It is evident that f is defined at all positive integers, n, and its value at n is nn.

Therefore, f is continuous at n, where n is a positive integer.

Comments

Is the function f defined by

continuous at x = 0? At x = 1? At x = 2?

The given function f is

At x = 0,

It is evident that f is defined at 0 and its value at 0 is 0.

Therefore, f is continuous at x = 0

At x = 1,

f is defined at 1 and its value at 1 is 1.

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

Therefore, f is not continuous at x = 1

At x = 2,

f is defined at 2 and its value at 2 is 5.

Therefore, f is continuous at x = 2

Comments

Find all points of discontinuity of f, where f is defined by

The given function f is

It is evident that the given function f is defined at all the points of the real line.

Let c be a point on the real line. Then, three cases arise.

(i) c < 2

(ii) c > 2

(iii) c = 2

Case (i) c < 2

Therefore, f is continuous at all points x, such that x < 2

Case (ii) c > 2

Therefore, f is continuous at all points x, such that x > 2

Case (iii) c = 2

Then, the left hand limit of f at x = 2 is,

The right hand limit of f at x = 2 is,

It is observed that the left and right hand limit of f at x = 2 do not coincide.

Therefore, f is not continuous at x = 2

Hence, x = 2 is the only point of discontinuity of f.

Comments

Find all points of discontinuity of f, where f is defined by

The given function f is

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < −3

Case II:

Therefore, f is continuous at x = −3

Case III:

Therefore, f is continuous in (−3, 3).

Case IV:

If c = 3, then the left hand limit of f at x = 3 is,

The right hand limit of f at x = 3 is,

It is observed that the left and right hand limit of f at x = 3 do not coincide.

Therefore, f is not continuous at x = 3

Case V:

Therefore, f is continuous at all points x, such that x > 3

Hence, x = 3 is the only point of discontinuity of f.

Comments

Find all points of discontinuity of f, where f is defined by

The given function f is

It is known that,

Therefore, the given function can be rewritten as

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x < 0

Case II:

If c = 0, then the left hand limit of f at x = 0 is,

The right hand limit of f at x = 0 is,

It is observed that the left and right hand limit of f at x = 0 do not coincide.

Therefore, f is not continuous at x = 0

Case III:

Therefore, f is continuous at all points x, such that x > 0

Hence, x = 0 is the only point of discontinuity of f.

Comments

Find all points of discontinuity of f, where f is defined by

The given function f is

It is known that,

Therefore, the given function can be rewritten as

Let c be any real number. Then,

Also,

Therefore, the given function is a continuous function.

Hence, the given function has no point of discontinuity.

Comments

Find all points of discontinuity of f, where f is defined by

The given function f is

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < 1

Case II:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

Therefore, f is continuous at x = 1

Case III:

Therefore, f is continuous at all points x, such that x > 1

Hence, the given function f has no point of discontinuity.

Comments

Find all points of discontinuity of f, where f is defined by

The given function f is

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < 2

Case II:

Therefore, f is continuous at x = 2

Case III:

Therefore, f is continuous at all points x, such that x > 2

Thus, the given function f is continuous at every point on the real line.

Hence, f has no point of discontinuity.

Comments

Find all points of discontinuity of f, where f is defined by

The given function f is

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < 1

Case II:

If c = 1, then the left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.

Comments

Is the function defined by

a continuous function?

The given function is

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < 1

Case II:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.

Comments

Discuss the continuity of the function f, where f is defined by

The given function is

The given function is defined at all points of the interval [0, 10].

Let c be a point in the interval [0, 10].

Case I:

Therefore, f is continuous in the interval [0, 1).

Case II:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

Therefore, f is continuous at all points of the interval (1, 3).

Case IV:

The left hand limit of f at x = 3 is,

The right hand limit of f at x = 3 is,

It is observed that the left and right hand limits of f at x = 3 do not coincide.

Therefore, f is not continuous at x = 3

Case V:

Therefore, f is continuous at all points of the interval (3, 10].

Hence, f is not continuous at x = 1 and x = 3

Comments

Discuss the continuity of the function f, where f is defined by

The given function is

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < 0

Case II:

The left hand limit of f at x = 0 is,

The right hand limit of f at x = 0 is,

Therefore, f is continuous at x = 0

Case III:

Therefore, f is continuous at all points of the interval (0, 1).

Case IV:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case V:

Therefore, f is continuous at all points x, such that x > 1

Hence, f is not continuous only at x = 1

Comments

Discuss the continuity of the function f, where f is defined by

The given function f is

The given function is defined at all points of the real line.

Let c be a point on the real line.

Case I:

Therefore, f is continuous at all points x, such that x < −1

Case II:

The left hand limit of f at x = −1 is,

The right hand limit of f at x = −1 is,

Therefore, f is continuous at x = −1

Case III:

Therefore, f is continuous at all points of the interval (−1, 1).

Case IV:

The left hand limit of f at x = 1 is,

The right hand limit of f at x = 1 is,

Therefore, f is continuous at x = 2

Case V:

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observations, it can be concluded that f is continuous at all points of the real line.

Comments

Find the relationship between a and b so that the function f defined by

is continuous at = 3.

The given function f is

If f is continuous at x = 3, then

Therefore, from (1), we obtain

Therefore, the required relationship is given by,

Comments

Show that the function defined by is discontinuous at all integral point. Here denotes the greatest integer less than or equal to x.

The given function is

It is evident that g is defined at all integral points.

Let n be an integer.

Then,

The left hand limit of f at x = n is,

The right hand limit of f at x = n is,

It is observed that the left and right hand limits of f at x = n do not coincide.

Therefore, f is not continuous at x = n

Hence, g is discontinuous at all integral points.

Comments

Is the function defined by continuous at π?

The given function is

It is evident that f is defined at x ππ.

Therefore, the given function f is continuous at x = π

Comments

Discuss the continuity of the following functions.

(a) f (x) = sin x + cos x

(b) f (x) = sin x − cos x

(c) f (x) = sin x × cos x

It is known that if g and h are two continuous functions, then

are also continuous.

It has to proved first that g (x) = sin x and h (x) = cos x are continuous functions.

Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real number.

Let c be a real number. Put x = c + h

If xc, then h → 0

Therefore, g is a continuous function.

Let h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.

Let c be a real number. Put x = c + h

If xc, then h → 0

h (c) = cos c

Therefore, h is a continuous function.

Therefore, it can be concluded that

(a) f (x) = g (x) + h (x) = sin x + cos x is a continuous function

(b) f (x) = g (x) − h (x) = sin x − cos x is a continuous function

(c) f (x) = g (x) × h (x) = sin x × cos x is a continuous function

Comments

Discuss the continuity of the cosine, cosecant, secant and cotangent functions,

It is known that if g and h are two continuous functions, then

It has to be proved first that g (x) = sin x and h (x) = cos x are continuous functions.

Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real number.

Let c be a real number. Put x = c + h

If x c, then h 0

Therefore, g is a continuous function.

Let h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.

Let c be a real number. Put x = c + h

If x ® c, then h ® 0

h (c) = cos c

Therefore, h (x) = cos x is continuous function.

It can be concluded that,

Therefore, cosecant is continuous except at x = np, n Î Z

Therefore, secant is continuous except at

Therefore, cotangent is continuous except at x = np, n Î Z

Comments

Find the points of discontinuity of f, where

The given function f is

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

Therefore, f is continuous at all points x, such that x < 0

Case II:

Therefore, f is continuous at all points x, such that x > 0

Case III:

The left hand limit of f at x = 0 is,

The right hand limit of f at x = 0 is,

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at all points of the real line.

Thus, f has no point of discontinuity.

Comments

Determine if f defined by

is a continuous function?

The given function f is

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

Therefore, f is continuous at all points x ≠ 0

Case II:



x2x2sin1xx2⇒-x2≤x2sin1x≤x2

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

Comments

Examine the continuity of f, where f is defined by

The given function f is

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

Therefore, f is continuous at all points x, such that x ≠ 0

Case II:

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

Comments

Find the values of so that the function f is continuous at the indicated point.

The given function f is

The given function f is continuous at, if f is defined at and if the value of the f at equals the limit of f at.

It is evident that f is defined at and

Therefore, the required value of k is 6.

Comments

Find the values of so that the function f is continuous at the indicated point.

The given function is

The given function f is continuous at x = 2, if f is defined at x = 2 and if the value of f at x = 2 equals the limit of f at x = 2

It is evident that f is defined at x = 2 and

Therefore, the required value of.

Comments

Find the values of so that the function f is continuous at the indicated point.

The given function is

The given function f is continuous at x = p, if f is defined at x = p and if the value of f at x = p equals the limit of f at x = p

It is evident that f is defined at x = p and

Therefore, the required value of

Comments

Find the values of a and b such that the function defined by

is a continuous function.

The given function f is

It is evident that the given function f is defined at all points of the real line.

If f is a continuous function, then f is continuous at all real numbers.

In particular, f is continuous at x = 2 and x = 10

Since f is continuous at x = 2, we obtain

Since f is continuous at x = 10, we obtain

On subtracting equation (1) from equation (2), we obtain

8a = 16

a = 2

By putting a = 2 in equation (1), we obtain

2 × 2 + b = 5

⇒ 4 + b = 5

b = 1

Therefore, the values of a and b for which f is a continuous function are 2 and 1 respectively.

Comments

Show that the function defined by f (x) = cos (x2) is a continuous function.

The given function is f (x) = cos (x2)

This function f is defined for every real number and f can be written as the composition of two functions as,

f = g o h, where g (x) = cos x and h (x) = x2

It has to be first proved that g (x) = cos x and h (x) = x2 are continuous functions.

It is evident that g is defined for every real number.

Let c be a real number.

Then, g (c) = cos c

Therefore, g (x) = cos x is continuous function.

h (x) = x2

Clearly, h is defined for every real number.

Let k be a real number, then h (k) = k2

Therefore, h is a continuous function.

It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is continuous at c and if f is continuous at g (c), then (f o g) is continuous at c.

Therefore, is a continuous function.

Comments

Show that the function defined by is a continuous function.

The given function is

This function f is defined for every real number and f can be written as the composition of two functions as,

f = g o h, where

It has to be first proved that are continuous functions.

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

Therefore, g is continuous at all points x, such that x < 0

Case II:

Therefore, g is continuous at all points x, such that x > 0

Case III:

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.

Let c be a real number. Put x = c + h

If xc, then h → 0

h (c) = cos c

Therefore, h (x) = cos x is a continuous function.

It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is continuous at c and if f is continuous at g (c), then (f o g) is continuous at c.

Therefore, is a continuous function.

Comments

Find all the points of discontinuity of defined by.

 

The given function is

The two functions, g and h, are defined as

Then, f = − h

The continuity of g and is examined first.

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

Therefore, g is continuous at all points x, such that x < 0

Case II:

Therefore, g is continuous at all points x, such that x > 0

Case III:

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

Clearly, h is defined for every real number.

Let be a real number.

Case I:

Therefore, h is continuous at all points x, such that x < −1

Case II:

Therefore, h is continuous at all points x, such that x > −1

Case III:

Therefore, h is continuous at x = −1

From the above three observations, it can be concluded that h is continuous at all points of the real line.

g and h are continuous functions. Therefore, g − is also a continuous function.

Therefore, has no point of discontinuity.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 12 Tuition Classes?

Find best tutors for Class 12 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 12 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more